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Abstract A numerical study of a quantitative analogy of fully developed turbulent flow in a
straight square duct rotating about an axis perpendicular to that of the duct and a stationary
curved duct of square cross-section was carried out. In order to compare the two flows, the
dimensionless parameters KTR ¼ Re 1=4=

ffiffiffiffiffiffi
Ro

p
and the Rossby number, Ro ¼ wm=Vdh, in the

rotating straight duct flow corresponded to KTC ¼ Re 1=4=
ffiffiffi
l

p
and the curvature ratio, l ¼ R=dh,

in the stationary curved duct flow, so that they had the same dynamical meaning as those
parameters for fully developed laminar flow. For the large values of Ro or l, the flow field satisfied
the “asymptotic invariance property”; there were strong quantitative similarities between the two
flows, such as in the flow patterns and friction factors for the same values of KTR and KTC. Based
on these similarities, it is possible to predict the flow characteristics in rotating ducts by considering
the flow in stationary curved ducts, and vice versa.
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Nomenclature
d ¼ pipe diameter
dh ¼ hydraulic diameter of the duct
f ¼ Fanning friction factor
f0 ¼ friction factor for a stationary

straight duct flow
KLR ¼ dimensionless parameter for

laminar flow in a rotating duct
¼ Re=

ffiffiffiffiffiffi
Ro

p

KLC ¼ dimensionless parameter for
laminar flow in a curved duct or
Dean number ¼ Re=

ffiffiffi
l

p

KTR ¼ dimensionless parameter for
turbulent flow in a rotating duct
¼ Re1=4=

ffiffiffiffiffiffi
Ro

p

KTC ¼ dimensionless parameter for
turbulent flow in a curved duct
¼ Re1=4=

ffiffiffi
l

p
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Introduction
Fluid flow in rotating and curved ducts is of interest because of its relevance to
various engineering applications. This includes flow through the cooling
passages of turbine blades, turbomachinery blade passages, heat exchangers,
and refrigeration equipment. These examples all feature secondary flow effects
due to rotation and curvature. Such secondary flow not only reduces the
volumetric flow rate for a fixed pressure difference, but also redistributes the
axial velocity field.

In fully developed flow through a straight duct rotating about an axis
normal to that of the duct, the Coriolis force throws fast-moving core flow in the
direction of the cross product of the mean velocity and the rotation vectors. The
near-wall flow is driven from the pressure side to the suction side of the duct
to preserve continuity along the wall regions. The onset of this secondary
flow increases the average values of the friction factor and the wall heat
transfer rate. In their experimental studies of the strong effect of rotation on the
turbulent wall boundary layers in a rotating rectangular duct, Hill and Moon
(1962) showed that on the pressure side of the duct, the rate of turbulent mixing
is increased and the boundary layer becomes considerably thinner, while the
reverse occurs on the suction side. Moore (1967) revealed that the influence
of rotation on velocity profiles, wall shear stresses, and turbulence distributions
is strongly dependent on the aspect ratio (height/width). The effect of rotation
is quite large at low aspect ratios, whereas much smaller effects are observed
at high ratios. Johnston et al. (1972) used an extremely narrow channel in
which the central flow region was unaffected by corner secondary flows. They
found that the body forces associated with rotation severely modify the mean
flow and turbulence fields. On the suction side of the channel, turbulence
activity is diminished, and eventually suppressed at high rotation rates, such
that the flow becomes laminar again at relatively high Reynolds numbers. On

k ¼ turbulence kinetic energy
p ¼ static pressure
p* ¼ modified pressure

¼ p 2 1
2 rV

2ðx 2 þ z 2Þ
R ¼ mean radius of curvature
Re ¼ Reynolds number ¼ wmdh=v
ReT ¼ turbulence Reynolds number

¼ k=vn
Ro ¼ Rossby number ¼ wm=Vdh

Sij ¼ strain-rate tensor
u, v, w ¼ velocity components in the direction

of x, y, z
Vsa ¼ secondary axial velocity

¼ wrot 2 wnorot for a rotating
straight duct ¼ wcurv 2 wnorot for a
stationary curved duct

wm ¼ mean velocity

wt ¼ friction velocity ¼
ffiffiffiffiffiffiffiffiffiffi
tw=r

p
Y ¼ normal distance from the wall
y + ¼ dimensionless wall distance

¼ wtY=n

Greek symbols
V ¼ angular velocity
dij ¼ Kronecker delta
l ¼ curvature ratio ¼ R=dh

m ¼ laminar viscosity of the fluid
mt ¼ eddy viscosity
n ¼ kinematic viscosity of the fluid
r ¼ density of the fluid
tij ¼ Reynolds stress tensor
tw ¼ wall shear stress
v ¼ specific dissipation rate of the

turbulence kinetic energy
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the contrary, turbulence activity is significantly enhanced and the turbulent
eddies aggregate into roll cells on the pressure side. Iacovides and Launder
(1991) numerically showed that the secondary flow experiences a transition
from the well-known double-vortex structure to a more complex four-vortex
structure due to flow instabilities on the pressure side at higher rotational
speeds.

Since longitudinal curvature and spanwise rotation produce similar effects,
analogous flow patterns can be observed in the fully developed flow of
stationary curved ducts. When a viscous fluid flows through a curved duct, the
streamline curvature generates a centrifugal force that acts normal to the main
flow and produces a secondary flow. This double counter-rotating secondary
flow causes the symmetric and quasi-parabolic axial velocity profile to become
asymmetric, shifting the location of the maximum axial velocity outward.
Humphrey et al. (1981) showed that the stabilizing effects due to the convex
curvature of the inner wall of the duct are responsible for lowering the
turbulence intensity there, whereas the destabilizing effects due to the concave
curvature at the outer wall increase it. Using LDV (Laser-Doppler Velocimetry)
measurements, Taylor et al. (1982) found that the magnitude of secondary flow
in a “weakly curved” duct is much smaller than that in a “strongly curved”
duct, but its effect is more important to the streamwise flow development
because of the lower streamwise pressure gradients.

Although a few studies have attempted to verify the similarity of the two
flows, their approaches were mainly qualitative. For example, Trefethen (1957)
showed that variation in the friction factor due to the secondary flow patterns
in both rotating and curved pipes can be expressed in terms of the Reynolds
number and a dimensionless parameter characterizing each flow, but he did not
provide a theoretical explanation. Ito and Nanbu (1971) and Ito (1959) derived
dimensionless parameters for these flows using an integral method, but they
did not mention any relationships between these parameters. Ishigaki (1994,
1996) introduced dimensionless parameters to demonstrate the quantitative
analogy between two flows in a circular pipe, and obtained satisfactory results.
In a previous paper (Lee and Baek, 2001), we confirmed the quantitative
analogy of fully developed laminar flows in orthogonally rotating straight ducts
and stationary curved ducts of square cross-section, using the dimensionless
parameters suggested by Ishigaki (1994). Our current objective is to show that
this quantitative analogy is also valid for fully developed turbulent flow using
the similarity parameters that have the same dynamical meaning as those of
the fully developed laminar flows. A low Reynolds number k 2 v turbulence
model and a higher order discretization scheme are used to predict the flow
fields reliably. Based on the results, it is possible to predict the flow
characteristics in rotating ducts by considering the flow in stationary curved
ducts, and vice versa.
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Governing equations
A Cartesian coordinate system fixed to a straight duct that rotates about y-axis
at a constant angular velocity V (Figure 1(a)), and a cylindrical coordinate
system in which the radius of curvature along the duct centerline is represented
by R (Figure 1(b)), are used for flow analysis in a rotating duct and a curved
duct of square cross-section, respectively. The velocity components in the
direction of increasing ðx; y; zÞ are denoted by ðu; v;wÞ. Here, u and v are the
velocity components of secondary flow in a cross-section, while w stands for
the primary flow. Since u; v, and w are independent of the z-direction in the fully
developed region, the equations of continuity and mean momentum for
incompressible, turbulent flow can be written as follows:

Continuity
›u

›x
þ

›v

›y
¼ 0 ð1Þ

Mean momentum

›

›t
ðrfÞ þ

›

›x
ruf2 ðmþ mtÞ

›f

›x

� �
þ

›

›y
rvf2 ðmþ mtÞ

›f

›y

� �
¼ Pf þ Sf

ð2Þ

Figure 1.
The configuration and
the coordinate system
for flow analysis
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where f represents u, v, or w. The pressure gradient term, Pf, and the body
force term, Sf, for both flows are given in Table I. In a rotating duct flow, p* is
the modified pressure given by

p* ¼ p 2
1

2
rV2ðx2 þ z2Þ ð3Þ

Governing Equations (1) and (2) are the limiting forms for both “weakly
rotating” (where the effect of rotation is negligible) and “weakly curved” (where
the effect of curvature is negligible) duct flows.

Since the conventional high Reynolds number k 2 1 model (Launder and
Spalding, 1974) is unable to resolve the near-wall motion that is responsible for
the development of the Coriolis and curvature driven secondary flow, the low
Reynolds number k 2 v model (Wilcox, 1994) is used. This model reliably
predicts flows with adverse pressure gradient, rotation, and streamline
curvature (Wilcox, 1993; Stephens and Shih, 1999; Song et al., 2001). In addition,
this model has significant advantages in numerical stability in that it does not
employ any type of damping functions. The /for the turbulence kinetic energy,
k, and specific dissipation rate, v, are

›

›t
ðrkÞ þ

›

›xj

ðrujkÞ ¼ tij
›ui

›xj

2 b*rvk þ
›

›xj

mþ
mt

sk

� �
›k

›xj

� �
ð4Þ

›

›t
ðrvÞ þ

›

›xj

ðrujvÞ ¼ a
v

k
tij

›ui

›xj

2 brv2 þ
›

›xj

mþ
mt

sv

� �
›v

›xj

� �
ð5Þ

where the eddy viscosity, mt, is related to k and v by

mt ¼ a*rk=v ð6Þ

and the Reynolds stress tensor, tij, the strain-rate tensor, Sij, and the turbulence
Reynolds number, ReT, are defined as follows:

tij ¼ 2mt Sij 2
1

3

›uk

›xk

dij

� �
2

2

3
rkdij; Sij ¼

1

2

›ui

›xj

þ
›uj

›xi

� �
; ReT ¼ k=vn ð7Þ

Pf Sf

f Rotating flow Curved flow Rotating flow Curved flow

u 2
›p*

›x
2
›p

›x
2rVw

rw 2

R þ x

v 2
›p*

›y
2
›p

›y
0 0

w 2
›p*

›z
2
›p

›z
22rVu 2

ruw

R þ x

Table I.
The pressure

gradient and body
force term for the

variable f
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Furthermore, a, a*, b, b*, sk, and sv are closure coefficients whose values are
summarized in Table II.

a* ¼
a0* þ ReT=Rk

1 þ ReT=Rk

; a ¼
5

9

a0 þ ReT=Rv

1 þ ReT=Rv

1

a*
;

b* ¼
9

100

5=18 þ ðReT=RbÞ
4

1 þ ðReT=RbÞ
4

ð8Þ

Similarity parameters
Most previous studies on turbulent flow in rotating or stationary curved ducts
used the Reynolds number, Re ¼ wmdh=n, to describe the characteristics of the
flows. For example, Lezius and Johnston (1976), Iacovides and Launder (1991),
and Younis (1993) introduced two dimensionless parameters, Re and 1/Ro, to
characterize turbulent flow in a rotating duct, while Patankar et al. (1975),
Taylor et al. (1982), and Hur et al. (1990) used Re and l as the corresponding
parameters in a stationary curved duct. However, Re does not involve the
effects of either rotation or curvature. In a previous paper (Lee and Baek, 2001)
dealing with a quantitative analogy of fully developed laminar flow in ducts of
the same configuration, a pair of dimensionless parameters, KLR and Ro, in a
rotating duct flow was used as a set corresponding to KLC and l in a stationary
curved duct flow. For laminar flows in orthogonally rotating ducts, the pair of
dimensionless parameters KLR and Ro can be drived as follows (for a circular
pipe flow, see Ishigaki (1994)):

KLR ¼ ðFi FrÞ
1=2=FLv ¼ Re=

ffiffiffiffiffiffi
Ro

p
ð9Þ

Ro ¼ Fi=Fr ¼ wm=Vdh ð10Þ

where Fi , rw2
m=dh, Fr , rVwm and FLv , mwm=d2

h represent the inertia,
Coriolis, and laminar viscous forces, respectively. In Equation (9), KLR stands for
the Reynolds number based on the velocity scale of secondary flow in a rotating
duct, USR ¼ wm=

ffiffiffiffiffiffi
Ro

p
, and the length scale dh. The Rossby number, Ro, can be

considered as a measure of the relative strength of the inertia force to the Coriolis
force acting on the fluid. In a similar way, for laminar flows in stationary curved
ducts, the pair of dimensionless parameters KLC and l can be obtained by
replacing the Coriolis force in KLR and Ro with the centrifugal force.

sk sv a0 a*
0 b Rk Rv Rb

2.0 2.0 1/10 1/40 3/40 6.0 2.7 8.0

Table II.
Turbulence model
constants
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KLC ¼ ðFi FcÞ
1=2=FLv ¼ Re=

ffiffiffi
l

p
ð11Þ

l ¼ Fi=Fc ¼ R=dh ð12Þ

where Fc , rw2
m=R is the centrifugal force. In Equation (11), KLC is the

Dean number and provides a measure of the intensity of the secondary flow.
The curvature ratio, l, represents the ratio of the inertia force to the centrifugal
force. In order to find the similarity parameters in turbulent flows that have
the same dynamical meaning as KLR and KLC for laminar flows, a different
approach for estimating the viscous force is needed. The method used here
is similar to that used by Ishigaki (1996) for a circular pipe flow, except that
it employs the hydraulic diameter, dh, instead of the diameter of the pipe, d.
In fully developed turbulent flows through a straight pipe, the wall shear stress
tw can be estimated from the Blasius resistance formula (Schlichting, 1979).
Since the friction factor for a circular pipe agrees with that for a duct with a
square cross-section, the turbulent viscous force, FTv, can be approximated
as FTv , tw=dh , rw

7=4
m n1=4d

25=4
h . Applying this to Equations (9) and (11), the

similarity parameters in turbulent flow that correspond to KLR and KLC for
laminar flow can be obtained as follows:

KTR ¼ ðFi FrÞ
1=2=FTv ¼ ðReÞ1=4=

ffiffiffiffiffiffi
Ro

p
ð13Þ

KTC ¼ ðFi FcÞ
1=2=FTv ¼ ðReÞ1=4=

ffiffiffi
l

p
ð14Þ

The second parameters Ro and l have the same forms as in laminar flow, since
the inertia force and body force do not include the viscous force term. For large
values of Ro or l, flow features are independent of these parameters. This
important property, the so-called “asymptotic invariance property”, has been
discussed by several authors. For examples, Ito and Nanbu (1971) showed that
their experimental results for rotating pipe flow conformed satisfactorily to a
single curve for Ro $ 10. Moreover, Ito’s study (1959) of the finite curvature
effects manifested that the effects of l were practically negligible for l $ 8. In
summary, in analogy to laminar flow, KTR or KTC is the sole governing
parameter in each turbulent flow and similarity between the two flows is
expected for the range of values of Ro or l that satisfy the “asymptotic
invariance property”.

Numerical method
In general, a numerical solution of the Navier-Stokes equations is expensive,
because the resulting discrete equations for the velocity components and
pressure are coupled. A fractional step method can alleviate this difficulty by
decoupling the solution of the momentum equations from the solution of the
continuity equation (Harlow and Welch, 1965; Chorin, 1968; Rosenfeld et al.,
1991; Lee et al., 2001). In the present method, the calculation is carried out in
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two steps. The first step (the convection-diffusion step) solves for an
intermediate velocity field (with the pressure gradients omitted) by advancing
the momentum equations in time using an implicit ADI method. Then, in order
to obtain a divergence-free velocity field, the velocities are corrected by the
pressure gradients in the next time step until the continuity equation is
satisfied (the continuity step). For steady flow, the solution is advanced in
pseudo-time until a converged solution is obtained. The viscous and pressure
gradient terms are discretized using second-order accurate central differencing,
while second-order accurate upwind differencing is used to minimize the cross-
stream numerical diffusion for the convective term. The turbulence model
equations are treated in a similar way to the momentum equations. To
accelerate the convergence of the solution on the steady state, locally varying
time steps are applied to both the Navier-Stokes and turbulence model
equations. The use of a non-staggered grid simplifies the implementation of
boundary conditions and reduces the additional storage requirements of
variables. Convergence criteria are set by 6 orders of residual drop of the
solution variables between the current and previous time step. A more detailed
descriptions of the numerical scheme can be found in Constantinescu and Patel
(1998). At the wall, the no-slip boundary condition is applied. All velocity
components and the turbulence kinetic energy, k, are set to zero. For the specific
dissipation rate, v, the following boundary condition proposed by Menter
(1993) is used.

v ¼ 60n=bðDyÞ2 ð15Þ

where Dy is the normal distance from the wall to the first grid point. Compared
with Wilcox’s original form (1993), this condition is much easier to implement
and e nsures the same accuracy. Due to the symmetric configuration of the
flow, the computation is only performed in a half-domain of the cross-section
with the symmetry boundary condition. On the cross-sectional plane, a non-
uniform 89 £ 45 grid with clustering at the near wall region is used. The node
closest to the wall lies below yþ ¼ 1 and at least 6 nodes cover a region within
yþ , 10 to resolve the near-wall flow properly. Computations for a wide range
of KT are carried out by fixing the Reynolds number at 2 £ 104 and changing
the Rossby number or curvature ratio within the range of Ro or l . 8.

Results and discussion

General flow patterns
For the same three values of KTR and KTC, Figure 2 shows the non-
dimensionalized axial velocity contours, secondary velocity vectors, and
streamlines. The upper half of the duct cross-section shows curved duct flow,
while the lower half shows rotating duct flow. The pressure and suction sides
in rotating duct flow correspond to the outer (convex) and inner (concave)
walls, respectively. For rotating duct flow, as the magnitude of KTR increases,

HFF
12,3

248



the high-momentum fluid, originally in the central core, is convected to the
pressure side of the duct, significantly reducing the thickness of the boundary
layers along the pressure and bottom sides, while the low-momentum fluid
accumulates along the suction side, causing the boundary layer thickness to
increase. The configurations of the secondary flow also change. The existing
double-vortex pattern breaks down into an asymmetric structure of four
counter-rotating vortices, due to the flow instabilities on the pressure side
(Figure 2(c)). In the case of stationary curved duct flow, the inviscid flow near
the axis of the duct, which has the highest velocity, is subjected to a larger
centrifugal force than the slower-moving fluid near the duct walls;
consequently, the location of the maximum axial velocity shifts toward the
outer wall of a curved duct. Similar to rotating duct flow, owing to an
imbalance between the radial pressure gradient and the centrifugal force, an
additional vortex pair appears near the outer wall for large KTC (Figure 2(c)).
In conclusion, the two flows show similar patterns for each value of KT.

The effect of rotation on the flow can be analyzed effectively using the
“secondary axial velocity”, Vsa, defined as the difference between the profiles of
axial velocity with and without rotation, as shown in Figure 3. The concept of
“secondary axial velocity” can be used identically in a stationary curved duct
flow to examine the curvature effect. For KT ¼ 3:76, due to the occurrence of
flow instability, the peak velocity drops considerably and shifts towards the
center of the duct, resulting in a large negative value of Vsa near the pressure
side (or outer wall).

The primary velocity profiles along the horizontal centerline of the duct are
plotted with the wall-law coordinates in Figure 4. For a smooth wall, the
velocity distribution near the wall follows the “law of the wall”

w

wt

¼
1

k
ln yþ þ B ð16Þ

where wt is the friction velocity at the wall, and the constants k and B take the
values 0.42 and 5.45, respectively (Chen and Patel, 1988). Due to the asymmetry
of the flow field induced by the effect of rotation or curvature, the friction
velocities differ on the pressure and suction sides of the duct. On the unstable
pressure side, the enhanced turbulent activity increases the level of wall shear
stress, while the reverse occurs on the stabilized suction side, where turbulent
activity is diminished. The present prediction shows good agreement with
Moore’s experimental data (1967).

Friction factor
One of the most important practical aspects of duct flow is an estimate of
the friction factor. Ito and Nanbu (1971) used the parameter Kt ¼ Re=Ro2,
which corresponds to K4

TR for rotating pipe flow, and Ito (1959) introduced
the dimensionless parameter Re(d/2R )2, which corresponds to K4

TC for
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curved pipe flow, in order to suggest empirical formulas for the friction
factors used to compute the pressure losses for fully developed turbulent
flow. The suggested formulas expressed in terms of KT have the following
forms:

Figure 2.
Axial velocity contours
(left), secondary velocity
vectors and streamlines
(right) at Re ¼ 20,000.
(upper: stationary
curved duct, lower:
rotating straight duct)
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Figure 3.
Secondary axial velocity

profiles along the
horizontal centerline of

the duct at Re ¼ 20,000

Figure 4.
Comparison of velocity
profiles with law of the

wall at Re ¼ 20,000
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For rotating straight pipes:

�f=�f0 ¼ 0:942 þ 0:058K1:128
TR 1 , KTR , 4:73 ð17Þ

For stationary curved pipes:

�f=�f0 ¼ 0:962 þ 0:065KTC 0:61 , KTC , 5:89 ð18Þ

For large values of KTR or KTC, they can be simplified as:

For rotating straight pipes;

�f=�f0 ¼ 0:924K
1=5
TR KTR . 1:97 ð19Þ

For stationary curved pipes;

�f=�f0 ¼ 0:933K
1=5
TC KTC . 2:21 ð20Þ

where �f=�f0 is the ratio of the average friction factors of these two flows
normalized by the corresponding value f̄0 for a stationary straight pipe.
Comparison of these empirical formulas (Equations (17)–(20)) clearly shows
the similarity of the two flows in circular pipes (Figure 5).

In order to verify whether the coincidence of the friction factor is realized for
square ducts, the average friction factors on both sides and the overall side are
plotted in Figure 6. The top (or bottom) and overall side average values of f=f 0

show a much steeper increase with KT than those of the pressure side. The
predicted friction factors for the two flows concur and show good agreement

Figure 5.
Friction factor ratio
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Figure 6.
Individual sides and

overall average friction
factors at Re ¼ 20,000

(Continued)
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with experimental data (Moore, 1967), although small discrepancies are found
on the top (or bottom) side.

In order to investigate the effect of rotation or curvature on the friction
factor in detail, the distribution of the local friction factor is shown in Figure 7.
The magnitude of the friction factor on the top (or bottom) increases with KT,
while the suction side values are reduced (Figure 7(a)). This may occur because
the counter-rotating eddy deflects the secondary flow toward the top (or bottom),
increasing the gradients of axial velocity at the near wall. For KT ¼ 3:76, due to an
additional pair of vortices induced by the flow instabilities, a sudden increase in
the value of f=f 0 occurs on the pressure side, except near the symmetry line where
the magnitude of f=f 0 drops considerably (Figure 7(b)).

Conclusions
Detailed numerical studies were performed using a low Reynolds number
k 2 v turbulence model and higher order discretization scheme in order to
investigate the quantitative analogy of fully developed turbulent flow in
orthogonally rotating ducts and stationary curved ducts with square cross-
section. The following conclusions were made:

(1) The validity of the similarity parameters suggested by Ishigaki (1996)
for circular pipe flow was confirmed for square duct flow. That is, KTR

Figure 6.
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Figure 7.
Distributions of the local

normalized friction
factors at Re ¼ 20,000
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and Ro for the turbulent flow in orthogonally rotating ducts
corresponded to KTC and l for stationary curved duct flows. Here, the
hydraulic diameter, dh, was used instead of the pipe diameter, d.

(2) For the Rossby number or curvature ratio that satisfies the “asymptotic
invariance property”, analogous to laminar flow, the quantitative
analogy between the two flows was established clearly. Both the friction
factor and the primary and secondary flow patterns were similar for a
wide range of KT.

(3) Based on this methodology, the flow characteristics in orthogonally
rotating ducts can be predicted by considering the flow in stationary
curved ducts, and vice versa.

The mean flow features inside rotating and curved ducts could be represented
reliably using a low Reynolds number K 2 v model, but more refined
turbulence models (i.e. Reynolds stress model, LES) are needed to consider the
non-isotropic effect of the Coriolis force and curvature on the turbulence. That
investigation will be considered in a separate paper.
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